A Potpourri of Advanced Topics in Six Sigma

> By Thomas Pyzdek ASQ Six Sigma Conference January 22-23, 2001 San Diego, CA

- Control by a central mind
- Predict and prevent potential dangers before damage is done
- Preserve stability
- The less fluctuation, the better
- Goal: prevent failures
- Bug-chasing at BayBank

Resilience

- Experimentation
 - Try a lot of things and keep what works
 - Premise: there is always a better way
 - Goal: many failures
- The edge of chaos
- Interleaf versus Microsoft

Hallmarks: order and simplicity
Model of efficiency: bacteria
Business example: sucker rod manufacturing

- Hallmarks: messiness and complexity
- Sloppiness, poor fit, quirky design, redundancy
- Slack
 - Many great thinkers did their best work when they had time off
 - Ford's efficiency expert
 - Why Deming loved monopolies

Complex Adaptive Systems (CAS)

- Order without control
- Interacting agents described by rules
 - Firms, species, neurons
- Order and complexity emerge
 - Free economies
 - Ecosystems
 - The brain

The Control Paradox

- The fatal conceit
- Who plans America?
 - No one
 - Everyone

- Nucor Vs. Big Steel's HQ
- Control discourages adaptation

Adaptive agents

- Defined by performance rules
 - Detectors: filter information from their environment
 - Effectors: actions taken in response to information processing
- Adapt by discovering new rules

Mechanisms of CAS

- Tagging
- Internal models
 - Tacit
 - Overt
- Building blocks

0

Properties of CAS-1

- Aggregation
- Nonlinearity
 - Multiplier effect
- Flows

Properties of CAS-2

- Diversity
 - Convergence
 - Mimicry

Genetic Learning-1

- Knowledge encoded in a schema of rules
- Rules modified by experience (learning)
 Six sigma black belt helpful, but not required!
- Knowledge shared through intercourse
 - Sexual or social sharing
 - Crossover
 - Mutation

• The Prisoner's Dilemma Game

		Agent 1		
		Cooperate	Defect	
Agent 2	Cooperate	\$3, \$3	\$0, \$5	
	Defect	\$5, \$0	\$1, \$1	

Genetic Learning-3

• *Evolving* strategy versus planning strategy

Cultivation Techniques

- Landscape Theory
 - Aggregation building within organizations
 - Groups highly compatible agents
 - Determines which configurations are stable
- Norm building techniques
 - Creating internal models among agents
 - Aids in tagging and aggregation

What Can Six Sigma Professionals Do?

- Challenge assumptions, admit mistakes
- Develop resilient approaches to quality
- Tolerate variation, failure, redundancy, slop
- Value individuals as well as groups
- Use special knowledge to accelerate learning

A New Approach to Quality

SEL

Dynamic SEL Model

The New Quality Paradigm

Practical Problem: Finding best replacement interval when inputs vary

Solution found using genetic search algorithms to explore alternatives (simulated SEL)

Data Mining for Quality

What is Data Mining?

The exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules.

Why Data Mining is Becoming Popular

- Vast quantities of data are being produced
- Data are being warehoused
- Computing power is affordable
- Competitive pressures
 - Service a key competitive factor
 - "Mass customization"
 - Information a product in itself

Data Mining Tasks

- Classification
- Estimation
- Prediction
- Affinity grouping
- Clustering
- Description

Data Mining Approaches

- Top-down *hypothesis testing* Retrospective testing of preconceived ideas
- Bottom-up knowledge discovery (KD)
 - Directed: Explain or categorize a particular data field (e.g., income)
 - Undirected: Search for patterns or similarities among groups of records

Hypothesis Testing

- Generate good ideas
- Determine data needed to test hypotheses
- Locate data
- Prepare data for analysis
- Build computer models using data
- Use computer models to confirm/disconfirm hypotheses

Directed Knowledge Discovery-1

- Goal-directed
- Answer questions such as:
 - Which products have the highest failure rates?
 - Which processes produce the smallest variances?
 - What are the customer attrition rates for various quality levels?

Directed Knowledge Discovery-2

- Identify sources of preclassified data
- Prepare data
 - Data cleansing
 - Compute additional fields
- Build and train a computer model
- Evaluate the computer model
- Learn from outliers

Undirected Knowledge Discovery-1

- Generate ideas to be evaluated using directed KD and hypothesis testing
- E.g., "Which defects occur together?" rather than "Which defects occur with cracks?"

Undirected Knowledge Discovery-2

- Identify the sources of data
- Prepare the data
- Build and train computer model
- Evaluate the computer model
- Apply computer model to new data
- Identify targets for directed KD
- Generate new hypotheses to test

Information Systems Quality

Why IS Quality?-1

- IS is vital to serving customer
- IS systems are integrated into everyone's work
- IS systems are very costly to purchase
- IS systems are very costly to operate
- IS systems are becoming more visible to customers

Why IS Quality?-2

- IS Quality stinks
 - Systems are unreliable
 - IS systems are user-hostile
 - Data are hard to find
 - Data are incorrect
 - Data are missing
 - Data are difficult to interpret

Real Life Examples

Problem	Cost
In the past year there were several instances where web site customers downloaded fully functional units rather than demo versions	\$3.1 million in lost revenues
12% of email responses to customer inquiries are undeliverable	\$ Unknown. 12,000 undeliverables/month
24% of all customer web site issues are not resolved	\$ Unknown. 800 unresolved issues/month

How Can Six Sigma Help?

- Apply tried-and-true quality technology to IS
 - Determine cost of poor quality
 - Establish basic quality systems
 - Apply to procurement, design,, and development
 - Apply Six Sigma methods to improving the IS process (DMAIC)

Virtual DOE using Data Mining and Artificial Neural Networks

What Are Artificial Neural Networks?-1

• Computer models based on *very* crude approximations to the neural connections of brains

What Are Artificial Neural Networks?-2

What Is Needed to Use Neural Nets?

- Characteristics of candidate problems
 - The inputs are well understood
 - You know what's important, but not how to model it
 - The output is well understood
 - You know what you are trying to predict
 - Experience is available
 - Examples will be used to train the network

The Data

PH_Time PH	Distan	Defects
38	22.5	15
40	20.0	13
40	25.0	16
45	17.5	15
45	22.5	5
45	26.0	11
50	20.0	12
42	22.5	10
50	25.0	3
42	22.0	11
46	22.0	4
55	25.0	4
55	21.0	17
55	25.0	15
50	24.0	3
49	25.0	3
57	37.0	10
35	25.U	20
40	37.5	17
3U 20	20.0	27
20	22.0	JJ 27
20	20.0	57
20	27.0	50
50	20.0	13
50	20.0	5
50	25.0	3
50	30.0	5
50	14 0	12
50	37.5	14
50	45.0	16
50	50.0	40
60	20.0	35
60	25.0	18
60	37.5	12

F

The Response Surface Modeled by the Neural Net

What If? Analysis & VDOE Can Get You in the Neighborhood

The Response Surface Found Using DOE

Data Mining Cautions

- Data quality issues (errors, relevance)
- Data availability issues
 - Missing Xs, non-orthogonal, unbalanced
- Data range issues

Approach

Experiments In direction Of steepest Ascent RSM Experiments To find Robust optima

Control and Improvement Plans

End

New

• Define

Too many parts don't meet the customer minimum requirement for test to failure for an injection molded plastic part.

Measure

There are two CTQs: average test to failure force, and standard deviation.

• Analyze

Perform data mining to identify promising hypotheses

Drill Down and Explore

Full Tree

Initial Data Mining

Test to Failure Analysis by Process Type

Extract data from the node of interest

🔳 Tree	1 - Data : Noo	de 31					_ 🗆 ×
<u>F</u> ile <u>E</u> o	lit <u>V</u> iew <u>H</u> elp						
	strength		design	componen	failmode	process	
1	80		Right Leg	Foot (Leftw	C1	Screwing with gluing	-
2	62		Right Leg	Foot (Leftw	C1	Screwing with gluing	
3	61		Right Leg	Foot (Leftw	C1	Screwing with gluing	
4	63		Right Leg	Foot (Leftw	C1	Screwing with gluing	
5	61		Right Leg	Foot (Leftw	C1	Screwing with gluing	
6	90		Right Leg	Foot (Leftw	C1	Screwing with gluing	
7	65		Right Leg	Foot (Leftw	C1	Screwing with gluing	
8	69		Right Leg	Foot (Leftw	C1	Screwing with gluing	
9	80	Confidential	Right Leg	Foot (Leftw	C1	Screwing with gluing	
10	59		Right Leg	Foot (Leftw	C1	Screwing with gluing	
11	74		Right Leg	Foot (Leftw	C1	Screwing with gluing	
12	78		Right Leg	Foot (Leftw	C1	Screwing with gluing	
13	78		Right Leg	Foot (Leftw	C1	Screwing with gluing	
14	113		Right Leg	Foot (Leftw	C1	Screwing with gluing	
15	77		Right Leg	Foot (Leftw	C1	Screwing with gluing	
16	61		Right Leg	Foot (Leftw	C1	Screwing with gluing	
17	70		Right Leg	Foot (Leftw	C1	Screwing with gluing	<u> </u>

Note: Program also creates SQL query to extract from large databases

Hypothesize and experiment

- $Y = f(X_1, X_2, X_3)$
- Strength = f(Cross Sectional Area, Material, radius)
- Train neural net and conduct VDOE to find starting point
- DOEs
- Prepare control and improvement plans

