Lean Six Sigma Statistical Surprises and Absurdities

By Thomas Pyzdek

"There are three kinds of lies: lies, damned lies, and statistics."

"When in doubt, tell the truth."

- Mark Twain (1835-1910)

Surprises and Absurdities

- Surprise
- A legitimate result that contradicts our expectation.
- Absurdity
- An unexpected result that leads to a conclusion that isn't true.
- Lying with statistics
- A statement which uses statistics to convey a misleading result.

Sample Bias

- The average salary of our graduates is $\$ 100,000$ per year... or not
- Whose address or phone number is the school likely to have: Alumni club members? Or homeless graduates?
- Who is most likely to respond: successful alumni or unsuccessful alumni?
- Which is more likely: respondents who overstate their income, or who understate their income?
- Accurate responses don't affect the bias.
- Discussion: can you think of other sources of sample bias?

Averages, Averages

Salaries:

- \$50,000
- \$50,000
- \$70,000
- \$500,000

Which statement is correct?

A. Average salary $\$ 50,000$
B. Average salary $\$ 167,500$
C. Average salary $\$ 60,000$

Which is right?
D. All of the above
A. mode
B. arithmetic mean
C. median

Statistics

Variable	Mean	Median	Mode	N for Mode
Salaries	167500	60000	50000	2

Selective Data Weighting

Selective Data Weighting

McIntyre, S., McIntyre, S., \& McKitrick, R. (2003). Figure 8 [Graph]. http://www.jstor.org/stable/43734600

Selective Reporting

- "8 out of 10 dentists prefer Smiley Toothpaste."
- Small sample sizes also a way to tell a lie.

Sample	Smiley	Other
1	2	8
2	4	6
3	6	4
4	5	5
5	8	2

Missing Information

- True perhaps, but most doctors don't smoke!
- Was "I don't smoke" offered as a choice?
- On any list, something must be first.

Missing Information-Graphics Version

Sales Skyrocket!

Scale Distortion

Prices Skyrocket!

3D Trickery

Beef Prices Double!

(But appear to quadruple)

"Say-What" and "So-What" Statistics

- The say-what? statistic
- "Lean organizations are 20\% more efficient!"
- More efficient than ...?
- The so-what statistic
- "More Black Belts prefer Puffs facial tissue"
- Who cares? Black Belts are no more qualified than anyone else to make this assessment.

Lurking Variables Can Make a Difference

Tough Program's Admission Data

True But Misleading Risk Statements

- Let's assume the following is true:
- For every 100,000 people who don't drink Yippee soda 99,999 will survive for the next year.
- For every 100,000 Yippee soda drinkers 99,998 will survive for the next year.
- True statement

"Drinking Yippee Doubles your risk of dying"

- Medical researchers report the "relative risk"
- Risk for non-Yippee drinkers: 1/100,000.
- Risk for Yippee drinkers: 2/100,000
- Relative Risk: 2

Risk Reporting Example

Mail Online

Home U.K. Home News Sport U.S. Showbiz Femail Health Science Money Rightn
Heath Home | Health Directory | Health Boards | Diets | MyDish Recipe Finder

Taking painkillers long-term 'triples risk of kidney cancer'

By CLAIRE BATES

> The overall risk of renal cell cancer remains small in comparison to that of other major diseases.
> Only six per 100,000 people are expected to develop the condition.

Odds of not getting renal cell cancer:
No Painkillers: 99,998 in 100,000
Painkillers: 99,992 in 100,000

From a Scientist Who Studies Research

Lies, Damned Lies, and Medical Science

Much of what medical researchers conclude in their studies is misleading, exaggerated, or flatout wrong. So why are doctors-to a striking extent-still drawing upon misinformation in their everyday practice? Dr. John loannidis has spent his career challenging his peers by exposing their bad science.

- Freedman, D. H. (2010, October 4). Dr. John loannidis Exposes the Bad Science of Colleagues. The Atlantic; The Atlantic. https://www.theatlantic.com/magazine/archive/2010/11/lies-damned-lies-and-medicalscience/308269/

Example of Problems

PLOS MEDICINE

Why Most Published Research Findings Are False John P. A. loannidis
Published: August 30, 2005•https://doi.org/10.1371/journal.pmed. 0020124

Article \approx	Authors	Metrics	Comments	Media Coverage
Correction Abstract Modeling the Framework for False Positive Findings	\& Correction 25 Aug 2022: Ioannidis JPA (2022) Correction: Why Most Published Research Findings Are False. PLOS Medicine 19(8): e1004085. https://doi.org/10.1371/journal.pmed. 1004085 \| View correction			
Bias Testing by Several Independent Teams Corollaries				
Most Research Findings Are False for Most Research Designs and for Most Fields Claimed Research Findings May Often Be Simply Accurate Measures of the Prevailing Bias How Can We Improve the Situation? References	There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.			

Other Issues

Conclusion

This large review has published some important information on the cardiovascular risks associated with NSAIDs, including the risk associated with different doses and in populations at both high and low risk of cardiovascular events. It raises concerns about some of these risks, in particular the risk associated with the widely used non-prescription drug diclofenac.

As its authors point out, it had some limitations.
Source Studies had weak designs to begin with.

Lurking Variables

- It had to rely on observational studies (rather than randomised controlled trials), which are subject to bias, especially in terms of other factors (confounders) that might infleence results However, the researchers did take steps to minimise this risk.
- The data in the studies mainly came from large administrative databases and electronic health records, and may not have been comprehensive, epecially concerning key information such as use of non-prescription NSAIDs and aspirin, or information about people's risk of heart problems.

Confounders

Mixed apples and oranges

- The review suffered from 'heterogeneity'. This means that many of the studies varied in their design, their methods and how they analysed results. Heterogeneity makes it harder to combine the results of different studies accurately and can, therefore, throw doubt on the findings of systematic reviews.

Patients using NSAIDs who are worried about side effects should not stop taking them, but instead
consult their doctor.

Be careful! Don't let this happen to you!

